Gib eine Aufgabe ein ...
Lineare Algebra Beispiele
[110143241]X=[2-3-2020411]⎡⎢⎣110143241⎤⎥⎦X=⎡⎢⎣2−3−2020411⎤⎥⎦
Schritt 1
Schritt 1.1
Forme um.
|110143241|∣∣
∣∣110143241∣∣
∣∣
Schritt 1.2
Find the determinant.
Schritt 1.2.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Schritt 1.2.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Schritt 1.2.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Schritt 1.2.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4341|∣∣∣4341∣∣∣
Schritt 1.2.1.4
Multiply element a11a11 by its cofactor.
1|4341|1∣∣∣4341∣∣∣
Schritt 1.2.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1321|∣∣∣1321∣∣∣
Schritt 1.2.1.6
Multiply element a12a12 by its cofactor.
-1|1321|−1∣∣∣1321∣∣∣
Schritt 1.2.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1424|∣∣∣1424∣∣∣
Schritt 1.2.1.8
Multiply element a13a13 by its cofactor.
0|1424|0∣∣∣1424∣∣∣
Schritt 1.2.1.9
Add the terms together.
1|4341|-1|1321|+0|1424|1∣∣∣4341∣∣∣−1∣∣∣1321∣∣∣+0∣∣∣1424∣∣∣
1|4341|-1|1321|+0|1424|1∣∣∣4341∣∣∣−1∣∣∣1321∣∣∣+0∣∣∣1424∣∣∣
Schritt 1.2.2
Mutltipliziere 00 mit |1424|∣∣∣1424∣∣∣.
1|4341|-1|1321|+01∣∣∣4341∣∣∣−1∣∣∣1321∣∣∣+0
Schritt 1.2.3
Berechne |4341|∣∣∣4341∣∣∣.
Schritt 1.2.3.1
Die Determinante einer 2×22×2-Matrix kann mithilfe der Formel |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb bestimmt werden.
1(4⋅1-4⋅3)-1|1321|+01(4⋅1−4⋅3)−1∣∣∣1321∣∣∣+0
Schritt 1.2.3.2
Vereinfache die Determinante.
Schritt 1.2.3.2.1
Vereinfache jeden Term.
Schritt 1.2.3.2.1.1
Mutltipliziere 44 mit 11.
1(4-4⋅3)-1|1321|+01(4−4⋅3)−1∣∣∣1321∣∣∣+0
Schritt 1.2.3.2.1.2
Mutltipliziere -4−4 mit 33.
1(4-12)-1|1321|+01(4−12)−1∣∣∣1321∣∣∣+0
1(4-12)-1|1321|+01(4−12)−1∣∣∣1321∣∣∣+0
Schritt 1.2.3.2.2
Subtrahiere 1212 von 44.
1⋅-8-1|1321|+01⋅−8−1∣∣∣1321∣∣∣+0
1⋅-8-1|1321|+01⋅−8−1∣∣∣1321∣∣∣+0
1⋅-8-1|1321|+01⋅−8−1∣∣∣1321∣∣∣+0
Schritt 1.2.4
Berechne |1321|∣∣∣1321∣∣∣.
Schritt 1.2.4.1
Die Determinante einer 2×22×2-Matrix kann mithilfe der Formel |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb bestimmt werden.
1⋅-8-1(1⋅1-2⋅3)+01⋅−8−1(1⋅1−2⋅3)+0
Schritt 1.2.4.2
Vereinfache die Determinante.
Schritt 1.2.4.2.1
Vereinfache jeden Term.
Schritt 1.2.4.2.1.1
Mutltipliziere 11 mit 11.
1⋅-8-1(1-2⋅3)+01⋅−8−1(1−2⋅3)+0
Schritt 1.2.4.2.1.2
Mutltipliziere -2−2 mit 33.
1⋅-8-1(1-6)+01⋅−8−1(1−6)+0
1⋅-8-1(1-6)+01⋅−8−1(1−6)+0
Schritt 1.2.4.2.2
Subtrahiere 66 von 11.
1⋅-8-1⋅-5+01⋅−8−1⋅−5+0
1⋅-8-1⋅-5+01⋅−8−1⋅−5+0
1⋅-8-1⋅-5+01⋅−8−1⋅−5+0
Schritt 1.2.5
Vereinfache die Determinante.
Schritt 1.2.5.1
Vereinfache jeden Term.
Schritt 1.2.5.1.1
Mutltipliziere -8−8 mit 11.
-8-1⋅-5+0−8−1⋅−5+0
Schritt 1.2.5.1.2
Mutltipliziere -1−1 mit -5−5.
-8+5+0−8+5+0
-8+5+0−8+5+0
Schritt 1.2.5.2
Addiere -8−8 und 55.
-3+0−3+0
Schritt 1.2.5.3
Addiere -3−3 und 00.
-3−3
-3−3
-3−3
Schritt 1.3
Since the determinant is non-zero, the inverse exists.
Schritt 1.4
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[110100143010241001]⎡⎢⎣110100143010241001⎤⎥⎦
Schritt 1.5
Ermittele die normierte Zeilenstufenform.
Schritt 1.5.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
Schritt 1.5.1.1
Perform the row operation R2=R2-R1R2=R2−R1 to make the entry at 2,12,1 a 00.
[1101001-14-13-00-11-00-0241001]⎡⎢⎣1101001−14−13−00−11−00−0241001⎤⎥⎦
Schritt 1.5.1.2
Vereinfache R2R2.
[110100033-110241001]⎡⎢⎣110100033−110241001⎤⎥⎦
[110100033-110241001]⎡⎢⎣110100033−110241001⎤⎥⎦
Schritt 1.5.2
Perform the row operation R3=R3-2R1R3=R3−2R1 to make the entry at 3,13,1 a 00.
Schritt 1.5.2.1
Perform the row operation R3=R3-2R1R3=R3−2R1 to make the entry at 3,13,1 a 00.
[110100033-1102-2⋅14-2⋅11-2⋅00-2⋅10-2⋅01-2⋅0]⎡⎢⎣110100033−1102−2⋅14−2⋅11−2⋅00−2⋅10−2⋅01−2⋅0⎤⎥⎦
Schritt 1.5.2.2
Vereinfache R3R3.
[110100033-110021-201]⎡⎢⎣110100033−110021−201⎤⎥⎦
[110100033-110021-201]⎡⎢⎣110100033−110021−201⎤⎥⎦
Schritt 1.5.3
Multiply each element of R2R2 by 1313 to make the entry at 2,22,2 a 11.
Schritt 1.5.3.1
Multiply each element of R2R2 by 1313 to make the entry at 2,22,2 a 11.
[110100033333-131303021-201]⎡⎢
⎢⎣110100033333−131303021−201⎤⎥
⎥⎦
Schritt 1.5.3.2
Vereinfache R2R2.
[110100011-13130021-201]⎡⎢
⎢⎣110100011−13130021−201⎤⎥
⎥⎦
[110100011-13130021-201]⎡⎢
⎢⎣110100011−13130021−201⎤⎥
⎥⎦
Schritt 1.5.4
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
Schritt 1.5.4.1
Perform the row operation R3=R3-2R2R3=R3−2R2 to make the entry at 3,23,2 a 00.
[110100011-131300-2⋅02-2⋅11-2⋅1-2-2(-13)0-2(13)1-2⋅0]⎡⎢
⎢
⎢⎣110100011−131300−2⋅02−2⋅11−2⋅1−2−2(−13)0−2(13)1−2⋅0⎤⎥
⎥
⎥⎦
Schritt 1.5.4.2
Vereinfache R3R3.
[110100011-1313000-1-43-231]⎡⎢
⎢⎣110100011−1313000−1−43−231⎤⎥
⎥⎦
[110100011-1313000-1-43-231]⎡⎢
⎢⎣110100011−1313000−1−43−231⎤⎥
⎥⎦
Schritt 1.5.5
Multiply each element of R3R3 by -1−1 to make the entry at 3,33,3 a 11.
Schritt 1.5.5.1
Multiply each element of R3R3 by -1−1 to make the entry at 3,33,3 a 11.
[110100011-13130-0-0--1--43--23-1⋅1]⎡⎢
⎢⎣110100011−13130−0−0−−1−−43−−23−1⋅1⎤⎥
⎥⎦
Schritt 1.5.5.2
Vereinfache R3R3.
[110100011-131300014323-1]⎡⎢
⎢⎣110100011−131300014323−1⎤⎥
⎥⎦
[110100011-131300014323-1]⎡⎢
⎢⎣110100011−131300014323−1⎤⎥
⎥⎦
Schritt 1.5.6
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
Schritt 1.5.6.1
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
[1101000-01-01-1-13-4313-230+10014323-1]⎡⎢
⎢⎣1101000−01−01−1−13−4313−230+10014323−1⎤⎥
⎥⎦
Schritt 1.5.6.2
Vereinfache R2R2.
[110100010-53-1310014323-1]⎡⎢
⎢⎣110100010−53−1310014323−1⎤⎥
⎥⎦
[110100010-53-1310014323-1]⎡⎢
⎢⎣110100010−53−1310014323−1⎤⎥
⎥⎦
Schritt 1.5.7
Perform the row operation R1=R1-R2R1=R1−R2 to make the entry at 1,21,2 a 00.
Schritt 1.5.7.1
Perform the row operation R1=R1-R2R1=R1−R2 to make the entry at 1,21,2 a 00.
[1-01-10-01+530+130-1010-53-1310014323-1]⎡⎢
⎢
⎢⎣1−01−10−01+530+130−1010−53−1310014323−1⎤⎥
⎥
⎥⎦
Schritt 1.5.7.2
Vereinfache R1R1.
[1008313-1010-53-1310014323-1]⎡⎢
⎢
⎢⎣1008313−1010−53−1310014323−1⎤⎥
⎥
⎥⎦
[1008313-1010-53-1310014323-1]⎡⎢
⎢
⎢⎣1008313−1010−53−1310014323−1⎤⎥
⎥
⎥⎦
[1008313-1010-53-1310014323-1]⎡⎢
⎢
⎢⎣1008313−1010−53−1310014323−1⎤⎥
⎥
⎥⎦
Schritt 1.6
The right half of the reduced row echelon form is the inverse.
[8313-1-53-1314323-1]⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦
[8313-1-53-1314323-1]⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦
Schritt 2
Multiply both sides by the inverse of [110143241]⎡⎢⎣110143241⎤⎥⎦.
[8313-1-53-1314323-1][110143241]X=[8313-1-53-1314323-1][2-3-2020411]⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦⎡⎢⎣110143241⎤⎥⎦X=⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦⎡⎢⎣2−3−2020411⎤⎥⎦
Schritt 3
Schritt 3.1
Multipliziere [8313-1-53-1314323-1][110143241]⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦⎡⎢⎣110143241⎤⎥⎦.
Schritt 3.1.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×33×3 and the second matrix is 3×33×3.
Schritt 3.1.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
[83⋅1+13⋅1-1⋅283⋅1+13⋅4-1⋅483⋅0+13⋅3-1⋅1-53⋅1-13⋅1+1⋅2-53⋅1-13⋅4+1⋅4-53⋅0-13⋅3+1⋅143⋅1+23⋅1-1⋅243⋅1+23⋅4-1⋅443⋅0+23⋅3-1⋅1]X=[8313-1-53-1314323-1][2-3-2020411]⎡⎢
⎢
⎢⎣83⋅1+13⋅1−1⋅283⋅1+13⋅4−1⋅483⋅0+13⋅3−1⋅1−53⋅1−13⋅1+1⋅2−53⋅1−13⋅4+1⋅4−53⋅0−13⋅3+1⋅143⋅1+23⋅1−1⋅243⋅1+23⋅4−1⋅443⋅0+23⋅3−1⋅1⎤⎥
⎥
⎥⎦X=⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦⎡⎢⎣2−3−2020411⎤⎥⎦
Schritt 3.1.3
Vereinfache jedes Element der Matrix durch Ausmultiplizieren aller Ausdrücke.
[100010001]X=[8313-1-53-1314323-1][2-3-2020411]⎡⎢⎣100010001⎤⎥⎦X=⎡⎢
⎢
⎢⎣8313−1−53−1314323−1⎤⎥
⎥
⎥⎦⎡⎢⎣2−3−2020411⎤⎥⎦
[100010001]X=[8313-1-53-1314323-1][2-3-2020411]
Schritt 3.2
Multiplying the identity matrix by any matrix A is the matrix A itself.
X=[8313-1-53-1314323-1][2-3-2020411]
Schritt 3.3
Multipliziere [8313-1-53-1314323-1][2-3-2020411].
Schritt 3.3.1
Two matrices can be multiplied if and only if the number of columns in the first matrix is equal to the number of rows in the second matrix. In this case, the first matrix is 3×3 and the second matrix is 3×3.
Schritt 3.3.2
Multipliziere jede Zeile in der ersten Matrix mit jeder Spalte in der zweiten Matrix.
X=[83⋅2+13⋅0-1⋅483⋅-3+13⋅2-1⋅183⋅-2+13⋅0-1⋅1-53⋅2-13⋅0+1⋅4-53⋅-3-13⋅2+1⋅1-53⋅-2-13⋅0+1⋅143⋅2+23⋅0-1⋅443⋅-3+23⋅2-1⋅143⋅-2+23⋅0-1⋅1]
Schritt 3.3.3
Vereinfache jedes Element der Matrix durch Ausmultiplizieren aller Ausdrücke.
X=[43-253-19323163133-43-113-113]
X=[43-253-19323163133-43-113-113]
X=[43-253-19323163133-43-113-113]